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ABSTRACT
Worldwide, more than 230 million adults have major noncardiac sur-
gery each year. Although surgery can improve quality and duration of
life, it can also precipitate major complications. Moreover, a substan-
tial proportion of deaths occur after discharge. Current systems for
monitoring patients postoperatively, on surgical wards and after tran-
sition to home, are inadequate. On the surgical ward, vital signs
evaluation usually occurs only every 4-8 hours. Reduced in-hospital
ward monitoring, followed by no vital signs monitoring at home,
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R�ESUM�E
Chaque ann�ee, plus de 230 millions d’adultes à travers le monde
subissent une chirurgie non cardiaque majeure. Si les interventions
chirurgicales peuvent am�eliorer la qualit�e et prolonger la dur�ee de la
vie, elles peuvent aussi pr�ecipiter l’apparition de complications
majeures. De plus, une proportion appr�eciable des d�ecès se produit
après la sortie de l’hôpital. Les systèmes actuels de surveillance des
patients après l’op�eration, dans les services de chirurgie et après leur
retour à la maison sont insuffisants. Lorsque le patient est hospitalis�e
Worldwide, more than 230 million adults (>500,000 Cana-
dians) have major noncardiac surgery annually. Among those
having surgery, average age and comorbidities are rising.1

Although surgery can improve patient outcomes, it can also
precipitate major complications.1 More than 10% of surgical
patients, age 45 and older, will suffer a major postoperative
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leads to thousands of cases of undetected/delayed detection of he-
modynamic compromise. In this article we review work to date on
postoperative remote automated monitoring on surgical wards and
strategy for advancing this field. Key considerations for overcoming
current barriers to implementing remote automated monitoring in
Canada are also presented.

dans le service de chirurgie, l’�evaluation de ses signes vitaux n’est en
g�en�eral effectu�ee que toutes les 4 à 8 heures. Une surveillance r�eduite
pendant l’hospitalisation, suivie de l’absence de surveillance des
signes vitaux à la maison conduit à la non-d�etection ou à la d�etection
tardive de milliers de cas de troubles h�emodynamiques. Dans le
pr�esent article, nous passons en revue les travaux effectu�es à ce jour
sur la surveillance postop�eratoire automatis�ee à distance dans les
services de chirurgie et les strat�egies envisageables pour favoriser le
progrès dans ce domaine. Nous pr�esentons �egalement les �el�ements
cl�es à consid�erer pour surmonter les obstacles actuels à la mise en
œuvre de la surveillance automatis�ee à distance au Canada.
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complication.1 Worldwide, >1.5% of adults die within 30
days of noncardiac surgery.2 Few of those patients die in the
operating room, the period when patients should be most
vulnerable.3 Moreover, a substantial proportion of post-
operative deaths occur after discharge.2

Medical complications are the main cause of mortality in
surgical patients.4-7 In the Perioperative Ischemic Evaluation
(POISE) trial 8351 noncardiac surgery patients (191 centres,
23 countries) were randomized to extended-release metoprolol
(mean age 68.9 years) or placebo (mean age 69.1 years).4 The
primary outcome, a composite of cardiovascular death,
nonfatal myocardial infarction (MI), and nonfatal cardiac ar-
rest, was observed in 6.4% of participants at 30 days. Seventy-
seven percent of surgical patients died in-hospital, whereas
23.0% of patients died postdischarge. Of those who died
postdischarge, 64% of deaths were from preventable vascular
causes, the most common being MI, arrhythmia, stroke, and
hemorrhage. The most common nonvascular cause of pre-
ventable death was infection/sepsis.4

The Vascular Events in Noncardiac Surgery Patients
Cohort Evaluation (VISION) studyda prospective study of
21,842 noncardiac surgery patients (23 centres, 3
countries)dexamined risk factors independently associated
with postoperative mortality. Myocardial injury after
noncardiac surgery (MINS; ie, myocardial injury caused by
ischemia within 30 days postoperatively [hazard ratio (HR),
3.69; 95% confidence interval (CI), 2.80-4.85]), bleeding
(HR, 2.77; 95% CI, 2.11-3.62), and sepsis (HR, 4.96; 95%
CI, 3.54-6.96) were the 3 strongest independent predictors of
30-day mortality.1

Data from large randomized controlled trials (RCTs)
suggest that blood pressure (BP) is also associated with post-
operative vascular complications and death. In POISE,
although a reduction in MI was found in the metoprolol
group, there was a significant increase in death (HR, 1.33;
95% CI, 1.03-1.74) and postoperative stroke (HR, 2.17; 95%
CI, 1.23-3.74).4 These postoperative complications were
partly mediated by clinically important hypotension, and
metoprolol increased the risk (HR, 1.55; 95% CI, 1.38-1.74).
Clinically important hypotension, defined as systolic BP < 90
mm Hg that required a medical intervention, had the largest
population-attributable risk for postoperative death (37.3%)
and stroke (14.7%).4

There is also a strong association between the duration of
clinically important hypotension and incidence of vascular
complications. In a substudy cohort of VISION (n¼ 14,687),
increased duration of intraoperative hypotension led to
increased composite risk of 30-day mortality, MINS, and
stroke.6 For instance, when the duration of intraoperative hy-
potension was more than 30 minutes, the adjusted relative risk
of the composite outcome was 1.19 (95% CI, 0.95-1.15). As
the duration of hypotension increased to > 120 minutes, the
adjusted relative risk became statistically significant at 1.66
(95% CI, 1.03-2.69).6 Clinically important hypotension also
remains a concern beyond the intraoperative period. In the
same cohort, those who were hypotensive postoperatively
(postoperative days 0-3) were at significant increased risk for
death (adjusted odds ratio, 2.64; 95% CI, 2.16-3.22).6

In POISE-2, a blinded factorial RCT of 10,010 patients
(135 centres, 23 countries) allocated to aspirin or clonidine vs
placebo (primary outcome: composite of death, nonfatal MI at
30 days), the median duration of clinically important hypo-
tension in the operating room was 15 minutes (95% CI, 5-30
minutes).7 However, on postoperative day 1, the median
duration was 150 minutes (95% CI, 60-374 minutes).7

Multivariable analyses showed that clinically important hy-
potension was an independent predictor of subsequent risk of
perioperative MI (adjusted HR, 1.37; 95% CI, 1.16-1.62).7

Patients die after surgery because of cardiovascular and
infectious complications, often preceded by potentially
detectable, early signs of hemodynamic compromise.8

Anaesthetic-related mortality has decreased 100-fold over
the past 100 years.9 An important part of this progress relates
to intraoperative monitoring to facilitate early detection of
hemodynamic compromise, intervention, and prevention of
complications. After transfer to the surgical ward, however,
vital signs are evaluated just every 4-8 hours.10 Such reduced
monitoring, followed by no monitoring at home, leads to
undetected/delayed detection of hemodynamic compromise,
associated with morbidity and mortality.11

In a study from the Cleveland Clinic,11 nurses blinded to
continuous pulse oximetry (SpO2) assessed patients (n ¼ 564)
postoperatively according to normal practice and detected a
5% incidence of hypoxemia (SpO2 < 90%). Among the 95%
of patients in whom hypoxemia went undetected by nurses,
blindly captured SpO2 detected that 38% had at least 1
continuous episode of hypoxemia, lasting at least 1 hour. Of
these, 10% had at least 1 continuous episode of hypoxemia,
lasting � 1 hour with an SpO2 of < 85%.11 Because hyp-
oxemia for > 5 minutes is associated with increased risk of
myocardial ischemia, suboptimal monitoring presents risk to
patients.11

New models of postoperative remote automated moni-
toring (RAM) are needed on surgical floors and at home if
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postoperative care is to achieve improvements similar to those
achieved intraoperatively. Our group formed a multidisci-
plinary consortium of experts, the Reducing Global Periop-
erative Risk and ImprOving Global Health outcomes
Through Innovation, Excellence, and appliCation of Digital
Health Technologies (PROTECT) Network. The aim is to
reduce perioperative mortality, complications, and hospital
readmissions by 50% within the next decade. In this article we
review preliminary work on postoperative RAM on surgical
wards and at home. Strategic priority research areas for
advancing this field are presented, as well as considerations for
overcoming current barriers to implementing RAM.
RAM: Key Components
RAM is a subcomponent of telemedicine encompassing a

range of audio-, digital-, and video-based telecommunications
infrastructures that facilitate clinical health care at a distance.
RAM refers to systems that include wearable sensors that
transmit vital signs data from patients to clinicians.12 Nangalia
et al.13 identified key components of RAM, including data
acquisition from sensors, transmission and integration of these
data to describe patient status, synthesis of appropriate action
of the front-line nurse, and escalation of care in the context of
real-time decision support. Over the past decade, a variety of
physiologic parameters have been captured using wearable
sensor technology.14 Wearable sensor models have evolved
rapidly, for which sensor measurements might be continuous,
intermittent, or both.14 Automation level also varies from
fully automatic to semiautomatic (ie, requires clinician or
patient prompt to initiate vital signs measurement).

Vital signs transmission modalities have evolved from
wired connections to wireless deployments and are becoming
more common, particularly in research.15 Current wireless
transmission protocols enable biometric sensors to be small
and portable and to support long-term data-gathering. These
wireless networks, collectively referred to as the “Internet of
Things” (IoT), include WiFi, ZigBee, Bluetooth low-energy,
and cellular networks, each with expanding global coverage.
Challenges with the IoT include limited power consumption
and range, cybersecurity, and constrained data rates. To
support the complete data life cycle, wireless biometrics
gathered in-hospital must be transferred and integrated to
electronic health records (EHRs) and support real-time noti-
fications to clinical care teams. Initiatives such as the Health
Level Seven International (HL7) consortium16 are facilitating
standardization of this process through international standards
for data exchange and messaging.

Models for data integration, synthesis of appropriate
clinician action, and related decision support vary depending
on patient acuity and context. More sophisticated systems
now go beyond “pushing” data to clinicians to support data
interpretation and clinical decision-making. For example,
Philips’ Guardian Solution (GS) (Philips Canada, Markham,
ON) is programmable according to hospital early warning
score (EWS) parameters.17,18 The GS features cableless sen-
sors and a bedside MP5 spot-check monitor, which transmits
and displays respiratory rate (RR), BP, heart rate, SpO2, and
temperature on the bedside MP5 spot-check monitor, and a
central monitoring station (Fig. 1). The GS integrates these
vital signs data and automatically calculates patients’
EWSs.17,18 Notifications are sent to front-line nursing staff,
calling for early attention to care should patients’ EWS risk
level be elevated to the next actionable band. The system
monitor also prompts the clinician according to EWS-
prespecified interventions.17,18 The system features built-in
reassurance measurements to prevent notification fatigue.
RAM in Surgical Populations: Work to Date
RAM on surgical wards and in the home remains a bur-

geoning field. We performed a literature search following the
criteria for RAM according to Nangalia et al.13 (see the
Supplemental Methods for details). Early in-hospital auto-
mated monitoring studies (Table 1) suggested benefit from
automated monitoring for patients age 19-100 years. In an
RCT, Watkinson et al.20 compared mandated multichannel
physiologic monitoring (electrocardiogram [ECG], heart rate,
RR, BP, SpO2, and temperature) vs standard care in 402
patients. Although > 50% of major events were reported, no
difference was observed in the number of alarms between the
2 study arms. This precluded any observed difference in
clinical outcomes; the primary composite end point (ie, one or
more major adverse events, urgent staff calls, changes to higher
care levels, and cardiac arrests or death) was not significantly
different between groups at 4 days.20 Only 16% of the pa-
tients in the mandatory monitoring arm were monitored for
the full 72 hours specified, and some patients in the control
arm received multiparameter monitoring, leading to concern
regarding protocol nonadherence and contamination biases.
Many of the continual physiologic data and related alarms
were also likely unnoticed by busy nursing staff because no
automated risk score calculation or protocolized response was
in place.20 The study results emphasized the importance of
addressing protocol adherence, coordinated alarm parameters,
and meaningful (actionable) notifications to front-line nurses.

In a larger RCT (n ¼ 1219), Ochroch et al.19 assessed the
effect of continuous SpO2 (CPOX) monitoring on the rate of
intensive care unit (ICU) transfer and ICU and overall hos-
pital length of stay. A CPOX monitor was installed on a
postcardiothoracic surgery care unit; patients were enrolled
over a 26-month period and randomly allocated to CPOX or
standard monitoring. Although CPOX influenced reasons for
ICU transfer, the overall rate of transfers between groups
remained similar.19 Unfortunately, the rate of alarms and the
group imbalance by virtue of the randomization method
limited interpretation of this study. A key issue for both early
trials19,20 was the absence of data integration and synthesis,
along with absence of support for interpretation of monitor
data and related escalation of caredlikely a limitation of the
technology at the time.

RAM is improving with recent technological advances that
enable data integration and synthesis, as well as directed front-
line nurse response. In the prospective before (n ¼ 2139) and
after (n ¼ 2263) study of Subbe et al.,17 patients admitted to
1 of 2 general medicine wards in a United Kingdom hospital
were connected to the Philips GS remote, automated advisory
vital signs, and notification system, configured to relay
abnormal vital signs to a rapid response team. During the
intervention period (14 months), the number of rapid
response team notifications increased from 405 to 524
(P ¼ 0.001; 1.43 notifications per patient that led to a change



Figure 1. The Philips Guardian Solution. (A) MP5 spot-check monitor, (B) wireless blood pressure monitor, (C) wireless continuous pulse oximetry
monitor, and (D) wireless respiratory sensor. Reproduced with permission from Philips Canada, (Markham, ON).
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in care), triggering fluid therapy, bronchodilators, and anti-
biotics. Mortality and nonfatal cardiac arrests decreased from
173 to 147 (P ¼ 0.042) and from 14 to 2 events (P ¼ 0.002),
respectively.17 A key driver of notifications in this study
population was abnormal RR.

Subbe et al.17 were the first to document detailed inves-
tigation of the effect of RAMdwith cableless sensors gener-
ating real-time, actionable notificationsdon nurses’ responses
and related clinical outcomes. The results are encouraging,
and robust clinical trials are needed to reach definitive con-
clusions about effectiveness. It is reasonable to expect that
similar effects can be realized in surgical populations. A large
part of physiologic derangement after surgery, however, is
likely due to clinically important hypotension.6,7 A challenge
to RAM to date is reliance on intermittent, pneumatic BP
cuffs. Their use in the context of RAM might lead to sub-
optimal clinician notification and response times in cases in
which BP is the predominant driver of patient deterioration.

The latest technologies show high potential for addressing
the gap in continuous noninvasive BP (NIBP) measurement.
Advanced NIBP technologies leverage fundamental principles
of biomechanics as modelled through MoenseKorteweg
equations, which map pulse wave velocity to characteristics
of the neighbouring arterial wall. With an initial BP calibra-
tion step, these equations can then be manipulated to derive
systolic and diastolic BP estimates from pulse transit time,
measured between ECG and photoplethysmography peak-to-
peak calculations.23

Weenk at al.12 recently piloted (n ¼ 20) remote automated
continuous in-hospital monitoring with the Sotera Wireless
ViSi Mobile (VM; San Diego, CA) device. This device features
continuous, cableless ECG, heart rate, RR, skin temperature,
SpO2, and NIBP measurement. BlandeAltman analyses
revealed that mean differences in vital signs and EWSs
measured by nurses and the VM were within the range of
predefined accepted discrepancies. An ongoing study is under
way12 to address further validation work, clinical work flows,
and VM connectivity challenges. In similar work, our group is
currently engaged in clinical pilot studies evaluating the Cloud
DX Vitaliti solution (Cloud DX, Kitchener, ON) (Fig. 2), a
multibiometric-channel lightweight monitor that captures
continuous NIBP, ECG, heart rate, and heart rate variability,
RR, core temperature, SpO2, and pulse wave velocity.

Recent feasibility studies21,22 have examined the applica-
tion of RAM systems in combination with hospital-to-home
virtual patient engagement interfaces. Such combined sys-
tems typically include a Bluetooth-enabled vital signs monitor,
a patient/family tablet interface featuring interactive symptom
surveys, and a secure video connection to facilitate clinician
assessment and follow-up.18,21,22
Connectivity and Alarm Fatigue
Connectivity issues remain a challenge, particularly in

remote areas that lack cellular communications infrastructure
and densely populated areas, where Bluetooth low-energy and
cellular networks might be subject to overcrowding.13 WiFi
networks are common installations in home health care en-
vironments but require significant power draw from wearable
devices than Bluetooth low-energy alternatives and can be



Table 1. Available postoperative remote automated monitoring studies

Study Design Population Intervention Comparator Follow-up Outcome Conclusion

In-hospital monitoring
Effectiveness

and feasibility
Ochroch et al.19 Single-centre RCT N ¼ 1219

Age: monitored ¼ 61.8 �
13.3; unmonitored ¼ 59.9
� 15.3 years

Men: monitored ¼ 59.9%;
unmonitored ¼ 64.4%

Continuous Standard LOS (1) Monitored patients transferred to
ICU 1 day earlier

(2) Mean estimated costs lower in
monitored patients ($15,481 vs
$18,713 USD) and ICU stay
$23,262 USD less

Benefit for high-
risk population

Effectiveness Watkinson et al.20 Single-centre RCT N ¼ 402
Age: monitored ¼ 72 (19-92)
unmonitored ¼ 73 (23-100)
years

Men: monitored ¼ 60%;
unmonitored ¼ 62%

Continuous Standard Discharge and
30 days

(1) Major events similar (56%
monitored; 58% unmonitored)

(2) Acute treatment changes similar
(53% monitored; 50%
unmonitored)

(3) 30-day mortality similar (34
monitored; 35 unmonitored)

No effect on
adverse events or
mortality

Feasibility Weenk et al.12 Single-centre
pilot RCT

N ¼ 20
Age: 49.9 � 13.4 years
Men ¼ 65%

Continuous and
simultaneous
using 2 devices

Manual 3 days (1) VS measurements consistent
(2) Relevant early warning scores on

the basis of respiration

Monitoring
technologies
promising

In-home monitoring
Effectiveness and

feasibility
Ertel et al.21 Single-centre,

nonrandomized
pilot

N ¼ 20
Age: 56 � 7 years
Men ¼ 80%

Tablet-based home
monitoring

Booklet
and class

90 days (1) 30-day readmission 20%; median
LOS 5.5 days (usual 7 days)

(2) 90-day readmission 30%
(3) No patient with completed daily

assessments readmitted within 30
days

Feasible and
enhances
monitoring

Effectiveness
and feasibility

McElroy et al.22 Single-centre, pilot
trial

N ¼ 443
Age: monitored ¼ 62.9 � 9.8;
unmonitored ¼ 65.9 �
14.1 years

Men: monitored ¼ 85.2%;
unmonitored ¼ 65.9%

Tablet-based home
monitoring

Booklet
and class

30 days (1) Readmission similar (7.4%
monitored; 9.9% unmonitored)

(2) Correlation between abnormal
biometric and intervention (r ¼
0.62; P ¼ 0.001)

(3) Mean satisfaction score: patient 4.9
� 0.5; clinician 4.9 � 0.2

Portal for
telemonitoring

ICU, intensive care unit; LOS, length of stay; RCT, randomized controlled trial; VS, vital sign.
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Figure 2. The Cloud DX Vitaliti multibiometric channel vital signs monitor. Reproduced with permission from Cloud DX (Kitchener, ON).
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insecure if not properly configured and maintained. Bluetooth
is an efficient, low-power wireless communication alternative,
but the theoretical transfer range of 100 m is often degraded
because of physical barriers in hospitals and residential set-
tings. Cellular capabilities allow built-in wireless transfer ca-
pabilities but could be expensive if a wearable device transfers
significant amounts of raw sensor data.24

Striking a balance between alarm fatigue and missed events
is also an important consideration. A systematic review of 62
articles did not seem to reach consensus on the correct balance
because suggested alarm rates range from 0.03 to 4 alerts per
patient.25 Alarm fatiguedassociated with delayed/no response
to alarmsdresults from desensitization due to increased
exposure to alarms, especially to nonactionable or false
alarms.26 Combined measures of customizing alarm parame-
ters and displays, introducing notification systems with better
algorithms, changing batteries, electrodes, and sensors regu-
larly, and careful attention to practice change have all been
documented as key strategies for reducing the number of
alarms from 18.5% to 89.0%.25,26 Winters et al. argue that
decreasing the number, duration, and noise level of alarms is a
top priority for RAM implementation to improve satisfaction
among front-line nurses.26
Moving Forward: Strategic Priority Research
Areas

To move RAM forward, the PROTECT network identi-
fied strategic priority research areas through discussions with
leading industry partners, health policy experts, health system
executives, and government officials. Discussions were focused
on the inter-related “clusters” of concentrated scientific effort
required to accelerate RAM in Canada and overcome barriers
to implementation and scale-up. On the basis of this process,
the following strategic priority research areas were identified.

Effectiveness evaluation

As previously discussed, adequately powered RCTs are
needed to make substantive conclusions about the effect of
RAM after surgery. Moreover, studies to date have focused on
either in-hospital12,19,20 or at-home21,22 monitoring; no
studies have examined models in which RAM spans the sur-
gical ward stay and post-discharge transition to home. Mul-
tiple prospective studies from our group confirm that patients
are vulnerable in the first 30 days after surgery.1,4,6,7,11
The PROTECT network is working to address the
hospital-to-home monitoring gap with the current Technol-
ogy Enabled Remote Automated Monitoring and Self-Man-
agement: Vision for Patient Empowerment Following Cardiac
and Vascular Surgery (THE SMArTVIEW, CoVeRed) trial.18

Patients undergoing cardiac and major vascular surgery at
participating sites in Canada and the United Kingdom are
eligible. The SMArTVIEW intervention includes RAM in
hospital with the Philips GS system. Postdischarge, patients
are followed by daily hospital-to-home monitoring for 30 days
with the Philips electronic Transition to Ambulatory Care
Program (Fig. 3), a tablet-based solution that combines clin-
ical software for care management with Bluetooth-enabled
monitoring devices measuring SpO2, heart rate, BP, temper-
ature, and weight.18 Specially trained hospital-to-home nurses
review patients’ vital signs daily and conduct secure video
visits to assess for patient concerns and early signs of post-
operative complications that require medical intervention.
Patient symptom surveys are factored into an embedded triage
score to flag recovery issues and prioritize nursing
assessment.18

Eight hundred patients will be randomized to the
SMArTVIEW intervention or standard postoperative care; the
trial will examine various feasibility and clinical outcomes,
including 45-day hospital readmission and emergency
department visits, total system notifications generated, and the
proportion of system notifications that lead to actionable
changes in care in hospital as well as at home (eg, treatment
for hypotension, infection). Our phase 1 usability study27

indicated high user acceptance ratings for the remote moni-
toring protocol and devices from patients (mean score 9.4 of
10 [10 indicating complete acceptance]) and nurses (mean
acceptance score 8.9 of 10); all patients were 65 years of age or
older. Feedback from these end users was used to optimize
intervention training and clinical work flows at study sites.27

Trial recruitment is now under way.
Deterioration: Toward more nuanced appreciation of
“signal”

Key to the optimal design of future RAM trials is the
acquisition of big data through large-scale, prospective,
observational studies. In the upcoming VISION-2 study, our
network will use the Cloud DX Vitaliti solution to collect
prospective, continuous biometric data on 10,000 patients



Figure 3. The Philips electronic Transition to Ambulatory Care system, featuring tablet interface and Bluetooth-enabled vital signs monitors.
Reproduced with permission from Philips.
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undergoing noncardiac surgery. This study will be a critical
step in obtaining sufficient big data to determine “signal” (ie,
prognostically important physiologic precursors of post-
operative hemodynamic compromise and adverse events) from
“noise” (ie, benign physiologic abnormalities that do not affect
prognosis). VISION-2 will allow us to potentially move
beyond RAM systems driven by static hospital EWSs.

Hospital EWSs are expected to modify patient outcomes
through the identification of patients with initial clinical
deterioration in whom an early intervention can prevent a
major event. Thus, evaluating the predictive ability of EWSs,
in real-life settings, is challenging because the outcomes tar-
geted in prediction models candand ideally shoulddbe
prevented by timely interventions that EWSs have triggered.
To minimize bias, observational studies have focused on the
ability of EWSs to predict short-term death and/or cardiac
arrest (ie, within 48 hours).28 A systematic review reported
that among observational studies in urban hospitals (in
developed countries), EWSs have high discriminative ability
for death (area under the receiver operating characteristic
curve, 0.88-0.93) and cardiac arrest (area under the receiver
operating characteristic curve, 0.74-0.86) within 48 hours.28

In terms of effect on processes, EWSs have been shown to
increase the number of calls to rapid response teams (RRTs)
and ICU outreach teams, as well as “code blue” calls for pa-
tients with pulse and RR abnormalities, suggesting that EWSs
trigger interventions earlier.

Although EWSs have been shown to have high predictive
value for death and cardiac arrest, they are not patient-spe-
cific.28 Rather, they are on the basis of standardized parame-
ters derived from thresholds for adverse outcomes across
multiple clinical settings and conditions.22 A limitation of this
model is that EWSs represent a “one size fits all” approach,
which might lack sensitivity to detect more subtle signs of
early deterioration in individual patients. For example, some
EWSs used in cardiac and other surgical populations specify
upper systolic BP thresholds between 170 and 200 mm
Hg.21,23 However, among patients who are recovering from
aortic surgery, the upper limit should be lower (140-150 mm
Hg) to decrease the risk of internal bleeding.21,22

Accrual of big data in VISION-2 and related large-scale
prospective cohort studies will facilitate more nuanced un-
derstanding of subtle signs of early deterioration and future
design of configurable RAM models, not driven by static
parameters.

Efficiency of deployment

Appropriate selection of patients at risk for home events
remains unknown. Preoperative risk stratification presents an
opportunity to identify those at sufficient risk to warrant
RAM interventions. The ability to be selective will be an
important consideration in terms of the feasibility and sus-
tainability of RAMdin hospital as well as at home. Cardiac
risk assessment before noncardiac surgery, in patients who are
45 years of age or older or who have significant cardiovascular
disease, is now considered best practice.29 Although validated
clinical risk indices, such as the Revised Cardiac Risk Index
(RCRI),30 are available for preoperative cardiac risk assess-
ment, prospective observational studies31,32 show high pre-
dictive and reclassification ability of the brain natriuretic
peptides (BNPs) and N-terminal fragment of proBNP (NT-
proBNP) for cardiovascular complications after noncardiac
surgery. On the basis of the available evidence,31,32 the Ca-
nadian Cardiovascular Society guidelines on perioperative
cardiac risk assessment and management for patients who
undergo noncardiac surgery strongly recommend29 the use of
preoperative NT-proBNP/BNP for those undergoing
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noncardiac surgery to enhance cardiac risk estimation. Risk
assessment on the basis of clinical indices and biomarkers is
evolving and shows promise in terms of directing selective
deployment of RAM.

Application of machine learning

Classical biostatistical analyses, on the basis of distribution
assumptions, will be of limited utility in the context of
continuous multibiometric big data withdlikelydmultiple
nonlinear interactions between variables. With deep
learning,33 a form of artificial intelligence, we will use repre-
sentation learning to organize and automatically extract pro-
gressive layers of features directly from raw data. Machine
learning presents an opportunity for new forms of analyses.
On the basis of inter-related clusters of physiologic data, our
goal is to predict, rather than detect, physiologic de-
rangements after surgery to facilitate timely (pre)intervention.
Machine learning architectures, such as generative adversarial
networks and convolution networks, have been shown to
surpass previous methods in machine vision, speech recogni-
tion, and natural language processing.33 We will use such
machine and deep learning methods to develop classification
models for identification of physiologic “sentinels” of patient
deterioration.33

Health research has more slowly adopted machine learning
algorithms than other fields, likely because of a lack of precedent
for approval by the Food and Drug Administration, Health
Canada, and the European Commission. Recent developments
are promising, however, including Food and Drug Administra-
tion approval of the first deep learning algorithm for analyses of
cardiac magnetic resonance imaging data34 and Cardiogram’s
recent development of a sensitive (98.04%) and specific
(90.02%) deep neural network for detecting atrial fibrillation via
Apple Watch (Cadiogram, Inc, San Francisco, CA).35

Prevalent strategies for training machine learning models
include supervised, unsupervised, and reinforcement tech-
niques.33 Supervised learning is associated with regression
(continuous values or ordinal values) and classification prob-
lems (categorical or unordered), where labels exist to define
desired network input-output mappings. Unsupervised tech-
niques are used for data sets without associated labels and
include clustering and generative modelling approaches.33

Reinforcement learning defines a reward mechanism for net-
works to measure performance against and faults that bear on
performance. An iconic demonstration of this method was
staged by the Google DeepMind team with an artificial in-
telligence system that outperformed all previous methods of
playing Atari video games.36 Supervised learning is preferred
for developing predictive models because it leverages gold
standard case labels. Capture of continuous biometric data on
10,000 patients undergoing noncardiac surgery in VISION-2
will allow for design of adverse event labels in support of
supervised machine learning activities.

Incorporation of biomarkers

Blood biomarkers are routinely used for preoperative risk
stratification (eg, NT-proBNP/BNP)31,32,37 and postoperative
diagnosis of adverse coronary events (eg, high-sensitivity car-
diac troponin T).38 Research has been conducted on a small
number of biomarkers that, although useful, do not reflect the
spectrum of biologic disease pathways seen in the periopera-
tive context. Complementary to the collection of continuous
prospective biometric data, the advent of highly multiplex
biomarker measurements provides a unique opportunity for
postoperative risk stratification on the basis of identification of
novel biomarkers. Refinements in point-of-care testing, fore-
going the need for phlebotomy, further introduce possibilities
for incorporating biomarkers into future RAM schemas.

The PROTECT network will use biobanks, created from
our large international perioperative studies,1,5,39 to undertake
case-control studies using platforms such as SOMAmer or
OLink. These studies will allow for identification of risk
stratification biomarkers, diagnostic panels, and testing of new
hypotheses related to the etiology and pathophysiology of
perioperative complications. Incorporating these new bio-
markers into risk scores could enhance precision of discrimi-
nation of at-risk patients4 and timely initiation of preemptive
therapy to prevent progression of postoperative complications
and death.

Economic evaluation and payment models

If the Centers for Disease Control and Prevention classified
perioperative death as its own category, it would be the third
leading cause of death in the United States.40 Major cardio-
vascular events are important on their own because they ac-
count for a third of postoperative deaths after noncardiac
surgery, resulting in substantially increased medical costs.5,41

In a study of high-risk gastrointestinal surgeries (n ¼ 935)
from Maryland, perioperative MI was among postsurgical
complications that resulted in the greatest increase in resource
use ($9,573 USD, 95% CI, $4,512-$14,633).42 A large
retrospective cohort study of all hospital discharges between
2003 and 2010 from the California State Inpatient Database
also showed the incremental cost associated with perioperative
MI.43 The median total hospital costs per patient, with and
without perioperative MI, were $154,180 USD (interquartile
range, $85,910-$280,110) and $52,040 USD (interquartile
range, $29,500-$91,100), respectively.43 Similar cost in-
creases were shown in a vascular surgery study in the United
States (n ¼ 236), in which the total cost of index hospital stay
per patient without postoperative MINS was $13,660 USD,
compared with $23,640 USD in patients who sustained
postoperative MINS.44 Patients who suffered postoperative
MINS were more likely to visit the emergency room post-
discharge (23.8% vs 20.3%; P < 0.02) and require ICU stay
during rehospitalization (7.1% vs 1.6%; P < 0.04).44

As evidence accrues and models for deployment of RAM
evolve, economic evaluations will need to consider clinician
roles, rates of adoption and diffusion, budget impact analyses,
and development of alternative payment and reimbursement
mechanisms to facilitate scale-up. The optimal clinical model
for deploying RAM and the related costs are not yet known.
Hence, comprehensive approaches to economic analyses are
necessary. In the SMArTVIEW trial,18 ward nurses are using
the Philips GS to support RAM on surgical wards, and a
trained subteam of nurses is responsible for hospital-to-home
monitoring via the electronic Transition to Ambulatory Care
system.

Our network will address economic evaluation of
this model by adopting a payer’s (Ministry of Health and
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Long-Term Care) as well as a societal (all intervention costs
and consequences, regardless of who pays or benefits)
perspective. There will be multiple outcomes for the analytic
techniques used,45-47 including cost-effectiveness analysis
(CEA; eg, cost per life-year saved, cost per pain-free days),
cost-utility analysis (CUA; cost per quality-adjusted life-year
saved), and cost analysis (cost of implementation of the
SMArTVIEW intervention compared with costs averted
[postoperative complications]). Incremental costs and effects
of the SMArTVIEW intervention, compared with usual care,
will also be calculated. Incremental cost analyses will indicate
what the cost savings will be for implementation of the
intervention, taking postoperative complications into consid-
eration. Incremental CEA will denote additional costs to save
an additional life or result in complication-free recovery.
Finally, incremental CUAs will calculate additional costs to
save an additional quality-adjusted life-year when comparing
SMArTVIEW with standard care. Probabilistic sensitivity
analyses will be conducted to assess how sensitive trial results
are to changes in values of key parameters (eg, uptake of
SMArTVIEW). Finally, an acceptability curve (95% CIs) will
be used to characterize the uncertainty in the findings with
respect to a range of maximum monetary values that a
decision-maker would be willing to pay given a certain change
in outcome.47

The time horizon chosen for this approach is 45 days and 6
months for the cost analyses and 6 months for CEA and
CUA. Supplemental Tables S1 and S2 illustrate cost defini-
tions and the steps required for these planned analyses, which
might inform approaches to economic evaluation in future
RAM trials.

The ability of postoperative RAM to transgress hospital-to-
home boundaries will also challenge the scientific community
to generate an evidence base for the implementation of new
care-related billing systems for virtual care that fulfil ethical and
economic requisites.48 Because of the rapid pace of technolog-
ical development, payment models must also follow an iterative
process that allows for adjustment and incorporation of
continual new data. The adaptation of the current billing system
to accommodate telemedicine health care services and pre-
miums in Ontario, undertaken by the Ontario Ministry of
Health and Long-Term Care,49 provides key examples of issues
that will likely need to be tackled, including updates to billing
software, classification of specific services under new care
models for billing, site approvals, certifications for the provision
of RAM services, and accounting for technical difficulties.

Incentives are needed to stimulate clinician involvement
and incorporation of time spent on documentation re-
quirements related to virtual patient-clinician interactions and
follow-up.50 Switching from fee-for-service reimbursements to
value-based payment approaches might address these princi-
ples. For example, in early 2017, the US Centers for Medicare
and Medicaid Services implemented a merit-based incentive
payment system for ambulatory care services.51 The model
was predicated on a composite performance score, which in-
corporates subscores for quality measures and advancing care
information through information technologies.51

When optimal implementation and cost evaluation models
are realized, the potential cost savings for RAM are consid-
erable. The 3 highest-volume surgeries performed in Canada
from 2015 to 2016 (excluding caesarean section delivery) were
for knee and hip replacement and fractures. Across Canada,
171,308 in-patient orthopaedic surgeries were performed,
representing 11.6% of all annual in-hospital surgeries.52 The
median length of acute hospital stay was 6.8 days and average
hospitalization cost was $9106 CAD. This cost equates to
>1.5 billion dollars annually in hospital-related expenses.52

RAM strategies targeted at reducing perioperative events
related to hemodynamic compromise could lead to significant
reductions in surgery-related economic burden.

Ethical implications: Access and effect on home life

RAM technologies will also have implications from a social
justice and equity perspective in terms of access to services,
effect on home life, patient autonomy, and interpersonal re-
lationships. Recent reviews exploring the social and ethical
dimensions of various digital health technologies in the
home53,54 highlight the importance of examining these fac-
tors. Balance needs to be struck with respect to privacy and
patient need to conform to the requirements of using these
technologies vs their potential to reduce the need for ap-
pointments or hospitalization.55-57 Additional considerations
include ease of patient/family use, effect on activities of daily
life, and perceived stigma of wearing monitoring devices.53,54

Consideration should be paid to equity through identifi-
cation of the “social locations” of patients, referring to factors
such as social class, gender, and race.54 Because Canadians live
in geographically diverse places, attention to how RAM
technologies affect access to health care services, across loca-
tions, will also be needed. A recent review of communications
infrastructure showed that differences in quality of data
infrastructure between urban and rural areas is growing
despite rural communities being most in need of
connectivity.55

Lack of Internet and cellular access is particularly evident
in rural and remote Indigenous communities, where resources
to support connectivity are largely unavailable.55 Affordability
is also a concern.56 Despite these barriers, a 2017 critical re-
view55 showed that adaptation of assistive technologies, for
health purposes, by Indigenous peoples is growing. Indige-
nous community engagement and feasibility stud-
iesdinclusive of diverse Indigenous group end-user needs and
connectivity capabilitiesdare needed to inform the develop-
ment of culturally safe models for adoption of RAM strategies.
Implementation of RAM in Canada: Overcoming
Barriers

Importance of interoperability and cybersecurity

A recent health policy review by the Personal Connected
Health Alliance identified the promotion of interoperability
standards as crucial to the success of scaling remote patient
monitoring programs.57-59 Presently, the PROTECT network
engages in proprietary, custom installations of monitoring
solutions to conduct researchda commonplace scenario in
Canada. Such custom deployments reflect ongoing, pragmatic
efforts to manage technical complexity, maintain vendor
confidentiality, and ensure regulatory compliance.58

More open and interoperable solutions will be needed to
facilitate efficiency of clinical trials. Common interfaces that



Figure 4. Conceptual schema of a remote monitoring device integration model using mobile services. Typically, the medical device or sensor will
transmit vital signs and related patient information via Bluetooth low-energy or ZigBee protocols to a mobile device and application (app). From the
mobile device, data can be shared with personal health records and stored in hospital information systems, community clinical data repositories
(for access by primary/community care providers), or primary care electronic medical records through Web-enabled transactions. EMR, electronic
medical record; IP, Internet provider; PHR, personal health record.
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support “plug-and-play” device-level exchange59 through to
back-end hospital EHR systems will need to be leveraged. The
conceptual system diagram presented in Figure 4 depicts this
principle for end-to-end (hospital-to-home) integration of a
patient RAM device, connected to an IoT network, through
ZigBee low-power radio or Bluetooth low-energy protocols.57

Leading not-for-profit organizations such as Continua
Health Alliance and Integrating the Healthcare Enterprise
have established product certification programs that leverage
personal health data, integration, and interoperability stan-
dards for wireless data transmission set by the International
Standards Organization, the Institute of Electrical and Elec-
tronics Engineers, and HL7.16 They are also working on
guidelines for systems interoperability by grouping standards
into profiles against which monitoring solutions can be
certified. However, there is still some way to go before the
health sector has a fully interoperable set of standards that can
be universally adopted and can support RAM.

The PROTECT network hopes to overcome barriers
promulgated by low adoption rates of RAM pilots and
insufficient volumes of patients to justify investment in
standardized integration protocols that connect mobile health
networks to hospital-based EHRs.

Another important consideration is cybersecurity. Imple-
mentation of RAM requires interfacing with legacy hospital
information systems. Installations can therefore feature ar-
chitecture constituted by decentralized and heterogeneous
subsystems, each with operational and managerial indepen-
dence. These conditions can confer security risk, even under
conditions in which solutions meet HL7 standards16 for
seamless connection and bidirectional data exchange. Cyber-
security experts have predicted that between 2015 and 2019,
data breaches will cost hospitals $305 billion (USD).60 The
average cost of a health care breach is estimated at more than
$2.2 million (USD), with the average stolen record costing
$355 (USD).61 As the RAM field grows, attention to cyber-
security issues will be a key factor in the development and
governance of research infrastructure and databases with
extensible architecture (to accommodate big biometric data),
supplier networks, and portal access points that meet regula-
tory compliance requirements.61

Importance of stakeholder engagement in system design
and implementation

Evidence supports the importance of sustained stakeholder
engagement for the viability of RAM. Since 2007, for
example, the Ontario Telemedicine Network Telehomecare
program has enrolled > 14,600 patients (living with conges-
tive heart failure and/or chronic obstructive pulmonary dis-
ease) in a 6-month program to increase self-management skills
via RAM and health coaching. A study of stakeholder facili-
tators and barriers to program implementation and adoption
identified the importance of user-friendly technology to
facilitate equitable access, motivational skills of the clinical
team to keep people engaged, and manageable patiente
clinician ratios.62

In the perioperative setting, suboptimal processes of care
can be co-responsible for adverse events.63 If RAM is to be
expected to reduce preventable adverse events related to the
lack of detection of early signs of clinical deterioration, it will
be crucial to engage stakeholders in system design18 to address
user acceptance and training, prevention of notification fa-
tigue, and effective communication around implementa-
tion.8,27 Evidence supports the positive effect of engaging
stakeholders early, with respect to training in particular,
because RAM models should target postsurgical wards, where
clinicians are unaccustomed to responding to continuous
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monitoring data in real time. In the study by Subbe et al.,17

nursing staff underwent systems training ahead of time. A
dedicated on-site trainer further supported model imple-
mentation until 80% of ward staff were trained in clinical
work flows.

At an organizational level, the Ontario Telemedicine
Network reported62 that structured, consistent, and ongoing
engagement with primary care providers to increase awareness
and facilitate referrals, partnering with hospitals to improve
care transitions into the community, and sustained change
management practices have been central to the sustainability
of the telehomecare program.

Drawing from these lessons, consideration of barriers
and facilitators to RAM, across network studies, will
include a structured, tiered scaling and uptake model with
clearly defined users, programs, organizations, and regions
of focus. Practice-level adoption will address the needs of
nurses, physicians, allied health support staff, patients, and
family members in terms of technology user-friendliness,
acceptance, and ease of work flows. At the organizational
level, perioperative pathways and programs will need to be
analyzed to identify opportunities for early stakeholder
adoption, motivation, and change leading to
organizational-level application. At the regional level,
collaborative efforts will be made to connect hospital and
regional health executives to network leaders, with a focus
on enabling the adoption, scale, and spread of network
monitoring solutions.
Advancing RAM: The PROTECT Network
Advancing the field of RAM requires innovation and

strategy to overcome implementation barriers. PROTECT
moves beyond traditional discipline-specific approaches,
comprising an international, multidisciplinary group of re-
searchers, administrators, and leaders in health policy. Prog-
ress will require the ability to capitalize on preexisting
databases and infrastructure to address issues such as preop-
erative risk prediction and intelligent deployment of RAM
models. Strategies will be drawn from multiple international
perioperative studies1,4,7,64-66 completed by network members
(see Supplemental Table S3).
Conclusion
Perioperative complications are a major neglected public

health issue with substantial economic implications. The
PROTECT network anticipates showing that RAM of
continuous physiologic parameters, along with biomarker
measurements, has the potential to reduce major perioperative
complications and hospital readmissions by up to 50%. As a
field, RAM remains in the early stages. Strategic priorities for
research in this arena represent key areas of inter-related focus
that can fulfil the enormous potential of postoperative RAM
to address an important void in Canadian and global research
and health care.
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